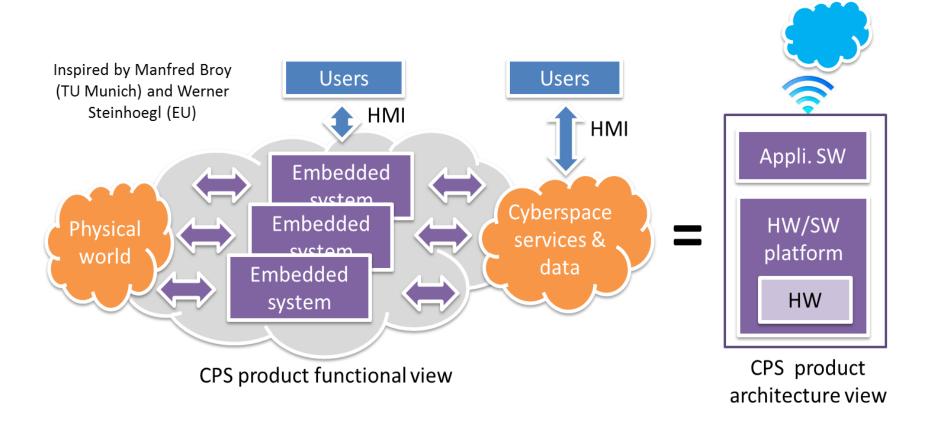


European Network of competencies and platforms for Enabling SMEs from any sector building Innovative CPS products to sustain demand for European manufacturing


Marta Rencz BME EET

What is CPS in EuroCPS?

CPS=Cyber Physical systems

The idea behind EuroCPS

The EuroCPS Project

- Network of regional ecosystems along the full value chain to service SMEs for innovative CPS (Cyber Physical systems) products
- One of the contributions to the "Airbus of chips"
 Common European Interest Project launched by Neelie Kroes .

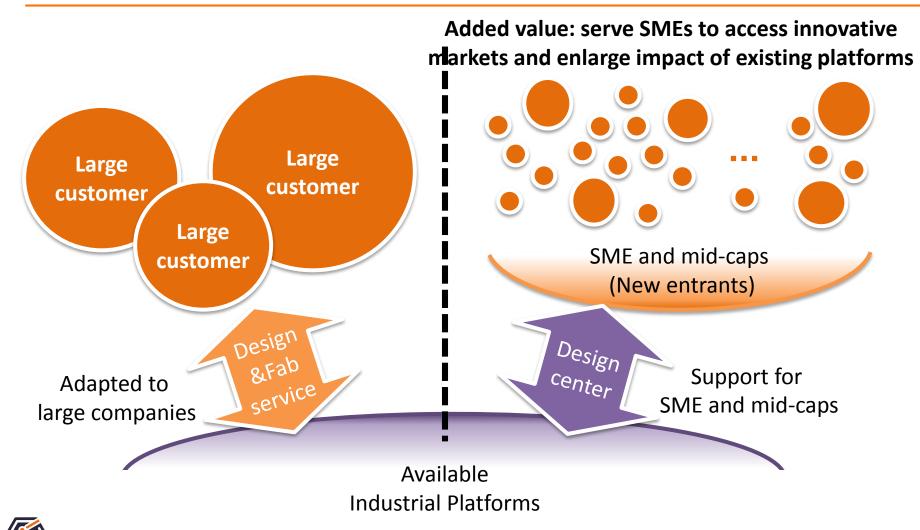
The EuroCPS Project

Main objectives:

- Take innovative embedded ICT from any sectors to SMEs.
- Facilitate user-supplier partnerships across value-chains and regions.

Main outcome:

 Enable the creation of innovative European CPS Products that will generate sustained demand for European manufacturing.


Goal:

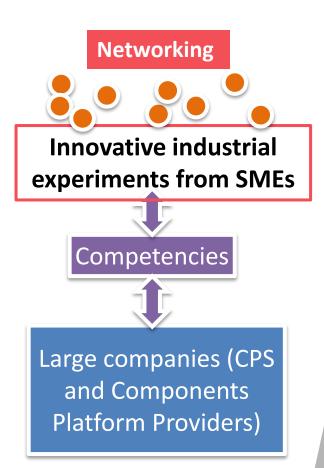
- Strengthen the position of European industry along the value chain :
 - Promote innovative CPS products using existing EU chips
 - Promote the optimization of CPS products with new EU chips at SMEs

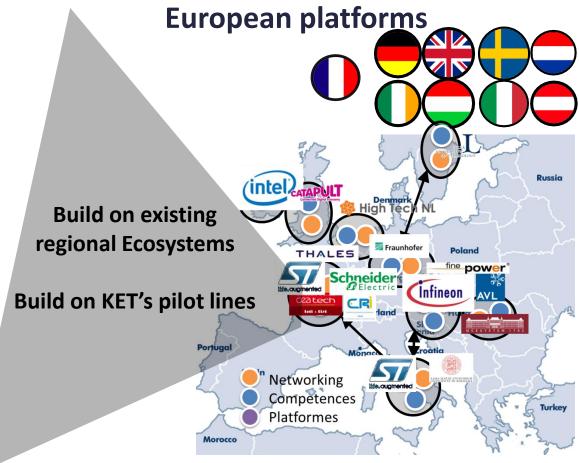
Design center concept:

access to advanced industrial platforms for SMEs

Do not forget: Today innovators are tomorrow's potential major players

The EuroCPS project 20/ 02 / 2015

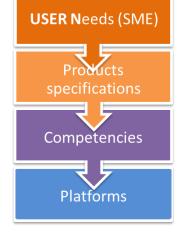

EuroCPS


The operation

SME experiments, building on EU strengths

Provide competencies for innovators to enable them using state of the arts

The EuroCPS project


20/ 02 / 2015

Each experiment services an SME using competences and platforms from the project

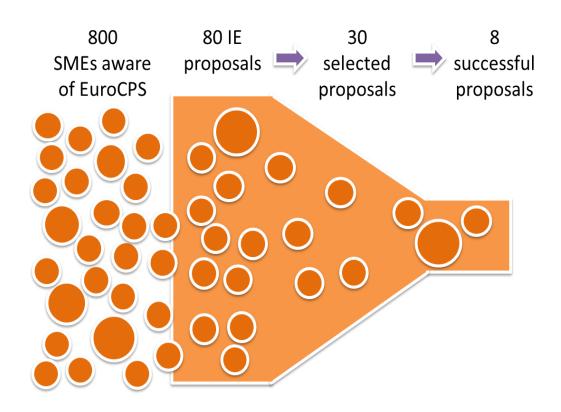
- 2 kind of platforms : CPS and Silicon components
- 5 kinds of competencies
 - CPS design: solution exploration and product specification
 - Embedded SW design
 - HW architecture design & components reuse
 - HW/SW system integration
 - Access to HW component and CPS platforms

3 Types of experiments

- System integration project : System solution using existing SW and HW components.
- SW intensive project system: Solution using existing programmable platforms.
- CPS with Innovative components project : Integrated HW-SW prototype requiring specific HW-SW platform..

Platforms

Platforms	Typical industrial experiments
STM32 (ST)	 SW applications for low-power embedded systems System using STM32 as a subsystem
Quark (Intel)	IoT applicationsSystem using Quark as a subsystem
CPSDA (Schneider)	 SW application (home energy management) Fog/cloud applications and energy services
Power conversion for CPS (Infineon-AT)	- Highly efficient networked systems for industrial applications (eg. lighting, machinery
Large drive simulation (AVL)	- Automated Test and Verification Systems for Tractors
Silicon (ST)	- Cyberphysical systems applications with new technologies and devices
Avionics (Thales)	- SW Applications and SW IP


EuroCPS operations

- €10m cost, €8m EC funding, 15 partners, 36months
- 2/3 of Funding devoted to Industrial experiments
 - Up to €150k for an SME
 - Coaching and Enablement to use platforms executed by partners
- Plan to service 30 Industrial experiments from SMEs selected through 3 open calls
 - T0+6 (June 2015)
 - T0+10 (Oct 2015)
 - T0+14 (Feb 2016)
- Cascade funding scheme, easy process for SMEs

Industrial experiment's target numbers

Cooperation within the Smart Anything Everywhere Initiative

Cooperation within the Smart Anything Everywhere Initiative

- The project is part of the cluster SmartAnythingEverywhere
- Open meetings are planned with all the 4 projects
 - organised by EU and/or projects
- Exchange experiment and best practice
 - Working with SME and Monitoring industrial experiment
- Cross advertisement of offered services
 - Competencies: Enablement to use advanced Technologies, IP, Platforms
 - Technologies: Advanced methods and tools
 - IP: specific Reusable Advanced components and subystems
 - Platforms: Infrastructure required for specific design/fabrication process
- Cross advertisement for open calls
- Promote the use of off the shelf IP and technologies from other projects in the EuroCPS experiments

The role of BME in the Project

The role of BME in the Project

- BME acts as a networking partner, contacting innovative SMEs in the region
- BME serves as a Design House, supporting design activities with most of the EuroCPS platforms
 - Major expertise in: ST, Intel, IFAT and SEI platforms
- BME serves as a cascade funding partner for the SMEs selected in the open calls
- BME is responsible for the web page of EuroCPS and of the Smart Anything Everywhere cluster

Web pages

- The web pages of EuroCPS and of the Smart Anything Everywhere cluster projects
- https://www.eurocps.org
- http://www. SmartAnythingEverywhere.eu

Thank you for your attention

