Development of Advanced Magnesium Alloys for Multifunctional Applications in Extreme Environments (MagMAX)

Project team

Institute of Materials Research Slovak Academy of Sciences

KATEDRA FYZIKY MATERIÁLŮ

Motivation – engineering applications

Conventional magnesium alloys

Advantages

- Excellent strength-to-weight ratio \rightarrow fuel saving
- Recyclability
- "Unlimited" source

Disadvantages

- Low to moderate strength
- Degradation of mechanical properties above 150 °C
- Safety issues (flammability, high corrosion rate)

Improvement of mechanical and physical properties

Motivation – engineering applications

Possible solution

Magnesium alloys with long-period stacking ordered structure (LPSO)

- Mg-Rare Earth-Transition Metals alloys
- Composite-like structure hard + soft layers

Improvement of mechanical and physical properties

Motivation – engineering applications

Possible solution - improvement

Rapidly solidified (RS) Mg-Rare Earth-Transition Metals alloys

- The better properties can be reached by reduced amount of RE ;
- High ignition temperature (RS Mg > 1050 °C steel 900 °C, Al 1000 °C

PROCESS

Alloy production V Rapidly solidified ribbon

Preparation of billet for solidification molding

Extrusion processing

Single-Roller Melt Spinning

Motivation – Mg for medical use

Conventional magnesium alloys

Advantages

- Non-toxicity
- Elastic modulus similar to that of bone
- Biodegrability

Disadvantages

- Not sufficient mech. prop.
- Non-controllable corrosion
- Rapid H₂ release
- Current applications are limited to small parts (screws, stents etc.)

current development of bioimplants requires **complex scientific-based research of high-strength Mg alloys** as potential material for biomedical application.

By proper choice of alloying content, processing method and coating both the mechanical and corrosion properties can be tailored

6 months

Responsibilities

Japan	KU
production of material	
 computational materials science 	
Czech Republic	CUNI
 detailed microstructure analysis 	
• advanced <i>in-situ</i> testing	g
Hungary	ELTE
• defect structure analysis	is
• thermal stability	
Poland	WUT
 corrosion resistance investigation 	
biocompatibility testing	g
Slovakia	IMR
 coating deposition optimization 	
• mechanical and tribological properties of	
protective coatings	

Main objectives of the project

Research and development of Mg-Rare Earths (RE)-Transition Metals (TM)-based alloys

- High temperature applications
 - \rightarrow preservation of mechanical properties above 200 °C
 - \rightarrow improvement of refractory properties
- Applicability in the human body
 - \rightarrow improvement of corrosion properties and biocompatibility
- Tailoring of properties for the particular applications (biomedical, engineering) by application of protective layer