Chemistry for Magnetic Resonance Imaging

Éva Jakab Tóth Centre de Biophysique Moléculaire, CNRS, Orléans

Gyula Tircsó Dept. of Phys. Chemistry University of Debrecen

MRI

Based on magnetic resonance of water protons

B = 0.5 - 3.0 Tesla

3-dimensional image excellent resolution no depth limitation though low sensitivity

MRI contrast agents:

Injected into patients to improve image contrast

Reduce the relaxation times of water protons

Avant injection

Bolus

~40 % of clinical MRI examinations

MRI contrast agents:

 H_2O

Gd³⁺ alone would be toxic...

Has to be wrapped up in a non-toxic molecule

- How strong is the interaction ?
- How fast the metal can eventually come out ?
- Could we replace Gd³⁺ with the biogenic metal ion Mn²⁺?

Make it specific: molecular imaging

New applications for refined analysis:

in vivo visualisation of molecules or molecular processes at the cellular level, *signatures of a given pathology*

- targeting to receptors or other biomarkers
- reporting on physical-chemical parameters of tissues (pH, pO₂, T, concentration of metabolites-, ions etc.) – responsive imaging

Smart MRI probes: capable of giving a specific MRI response depending on the tissue parameter to be detected.

Molecular Imaging - towards personalized medicine

- Detect the disease before morphological signs appear (tumors)
- Predict patient response to treatment
- · Follow drug delivery in vivo

Imaging High sensitivity, high specificity

Chemistry

Create probes that recognize biomarkers and "light up" when they bind them in vivo

Lanthanide-based molecular imaging agents

- responsive agents for functional brain imaging (detection of Ca²⁺, neurotransmitters)
- detection of Zn²⁺
- enzymatically activated agents
- detection of amyloid peptides (AD, diabetes)
- theragnostic approaches (combining therapy and diagnostics)

In the future, imaging will become more molecular.

We will be able to visualize molecules that are the signatures of a given pathology.

It will facilitate early diagnosis before morphological signs of the disease appear.

Cooperation between Debrecen and Orléans

- Joint PhD (Z. Palinkas, 2012)
- PHC Balaton 2012-2013 (student exchange in both directions)
- TET (S. Laine, PhD student in Debrecen 2 months)
- COST short term scientific missions (1 French student to Debrecen and several Hungarian students to Orléans : few days 3 months)
- Studium fellowship : 1 year stay in Orléans for Gyula Tircso (2015);
 Ferenc Kalman (2016)
- Campus Hungary Placement (K. Pota, 2014, 3 months; Z. Garda, 2015, 5 months)
- Master 2 internship in Orléans (R. Botar, 6 months, 2016)
- 8 joint publications since 2010; at least 5 more in preparation