Needs of the food industry for ICT and advanced manufacturing solutions to meet food related challenges

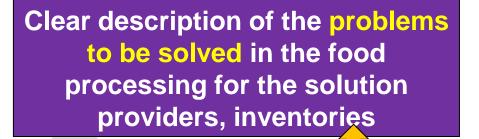
András Sebők Campden BRI Magyarország Nonprofit Kft.

Opportunities

- The food industry is the largest manufacturing sector in the EU
- Enabling technologies in particular ICT, advanced manufacturing and Industry4.0 provide several new functions, enabling capabilities, applications which may offer new solutions for the needs, problems of the food processing
 - Knowledge, new functions of the enabling technologies, solutions developed for other sectors have to be adapted to the specific tasks, conditions of the food processing

Barriers

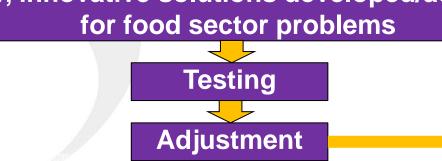
- Food technologists, production managers and food R+D experts are not aware of the majority of the capabilities and solutions, do not know the enabling functions available from the technologies (ET)
- ET knowledge and solution providers don't know the needs, problems of the food chain members, particularly that of the food processors, where their products and services can be used
- There is a need for systematic exchange of knowledge and dialogue for fostering mutual understanding and collaboration in research and development



Barriers

- Research and pilot testing facilities are limitedly available in the food sector, where Enabling Technology enablers and solutions can be tested
- Such testing facilities limitedly available in the ET sectors, where food and waste (perishable!) can be handled in a safe and hygienic way

Method of fostering interdisciplinary collaboration on innovation by networks



Clear description of the future /available functions/ solutions (enablers), inventories by the ETs for the food sector users

Systematic, regular dialogue, exchange of information, discussion

New, innovative solutions developed/adapted for food sector problems

Major drivers of food industry needs for research and innovation (Campden BRI 2018)

- **Safety** of the product
- Quality and Value
- Nutrition, health and well-being
- Sustainability, resilience and food security
- Skills and knowledge

based on:

- on-line survey of 2400 companies in 75 countries
- 649 face to face contributions
- 60 written submissions
- 31 industrial meetings
- 14 member interest groups

S3 Cooperation Workshop Budapest, 4-5.04.2018. source: Campden BRI (2018)

Matrix – drivers for industry needs – at different parts of the food supply chain

Drivers for industry needs	Supply chain			
	Primary production, raw materials and ingredients	Manufacturing and supply	Product and packaging	Food, drink and the consumer
Safety	Minimising contamination in production	Managing product safety hazards and risks in processing, distribution and sale	Delivering products that are safe throughout shelf-life	Protecting the consumer through appropriate guidance
Quality and value	Ensuring suitability for purpose at proportionate cost	Maintaining and enhancing quality through cost-effective process technologies	Maintaining product quality throughout shelf-life	Exceeding consumer expectations
Nutrition, health and well-being	Enhancing nutritional potential	Preserving and enhancing nutritional value in processing, distribution and sale	Delivering nutritious products that meet dietary needs	Responding to nutritional requirements and dietary habits
Sustainability, resilience and food security	Producing and securing 'more with less'	Assuring efficient and resilient manufacturing and distribution	Delivering safe and compliant products that minimise waste	Building consumer trust in the supply chain and its management
Skills and knowledge	Developing and maintaining skills, knowledge and 'tools' in production	Developing and maintaining skills, knowledge and 'tools' in manufacture, retail and food service	Anticipating and responding to regulatory and technical changes and their impacts on product and packaging	Engaging consumers in production, process, product and packaging knowledge

S3 Cooperation Workshop Budapest, 4-5.04.2018. source: Campden BRI (2018)

Managing product safety hazards and risks in processing, distribution, sale

Safety – Manufacturing and supply

- Detection and removal of foreign bodies (metal pieces, stones, bone splinters, fish bones, hard plastics, etc.)-(widely used: metal detection, X-ray, colour sorting; emerging: visual systems, laser scanners)
- Efficient process control with intelligent smart sensor systems (time, temperature, pressure, pH, water activity, salt, etc.)
- Cleaning and disinfection of machinery with built in automated systems, self-cleaning surfaces, sensors
- Antimicrobial surfaces nanotechnology
- Monitoring the cold chain sensors, satellite systems
- Food defence protecting production facilities sensors, alarm systems, camera systems

S3 Cooperation Workshop Budapest, 4-5.04.2018.

8

Delivering products that are safe

Safety – Product and Packaging

- Analysis of trends of known and emerging food safety hazards -big data, content based browsing
 - **Predictive food safety modelling big data, simulation**
 - Smart packaging technologies assuring and communicating product safety and extending shelf-life sensors, indicators

Protecting consumers through appropriate information and guidance

Safety – Food and drink and the consumer

- Enabling informed decision of consumers food transparency -efficient data and information flow, camera systems, digital signals and messages
- Provision of web-based guidance for consumer on food safety hazards and preventive measures – web-based tools, content based browsing

Maintaining and enhancing quality through cost-effective process technologies

Quality and value – Manufacturing and supply

- Lean, efficient and flexible manufacturing practices with increased automation and use of smart technology, artificial intelligence and machine learning –for uniform quality and less down time for cleaning, maintenance – smart, integrated sensor systems, automation, robots, tele-maintenance
- In-line and near line analytical methods for relevant parameters (protein, fat, moisture, carbohydrate, etc.) – reliable, factory - safe, user friendly, portable – visual systems

Maintaining and enhancing quality through cost-effective process technologies (2)

Quality and value – Manufacturing and supply

- Precise deboning, cutting of carcasses meat and poultry, precise portioning to enable uniform weight – visual systems, robots,
- Automated assembly and precise layering, decoration of ready to cook meals, pizzas, cakes, etc. – robots, 3D printing, mobile manipulators, little helpers, etc.
- Simulation, design and modelling of processes, whole systems, chains and factories,- virtual and augmented reality, big data
- Improving efficiency and hygiene application of robots, robotic co-workers, "little helpers" and mobile manipulators

Maintaining and enhancing quality through cost-effective process technologies (3)

Quality and value – Manufacturing and supply

- Better understanding of food preparation processes, structural changes inside the product,- baking, curing, freezing – CT scanning, X-ray imaging, 3D visualisation,
- Real time monitoring and simulation of product and information flow virtual and augmented reality

Maintaining Quality and value

Product and packaging

- Methods for measuring colour, texture, flavour, moisture, maturity, bruising, defects and spoilage of food products to assess quality, authenticity, stability of shelf-life and impact of processes for improved product uniformity, process control, sorting systems – visual systems, actuators, robots
- Predicting and modelling shelf-life big data
- Monitoring compliance of labels, coding, missing ingredients visual systems
- Closing of cups, monitoring proper closing of cups robots
- Monitoring of sealing of cups intelligent sensors, manipulators

Exceeding consumer expectations

Quality and value – Food, drink and the consumer

 Analysis of consumer perceptions of product quality and sensory properties consumer preferences and behaviour
– data analysis, virtual and augmented reality

Preserving and enhancing nutritional value in processing, distribution and sale

Nutrition, health and well-being - Manufacturing and supply

- Precise dosing of distinguished food ingredients advanced dosing systems, visual systems for monitoring
- Restructuring of food products to enable enjoyable food consumption for people having chewing disabilities – 3D printing

Delivering nutritious products that meet dietary needs

Nutrition, health and well-being – Product and packaging

Substantiation of health claims by analysing big data on claimed effects

Responses to nutritional requirements and dietary hazards

Nutrition, health and well-being – Food, drink and the consumer

Better insight into factors that influence food, drink and calorie intake and harnessing this to tackle noncommunicable diseases – data collection, data bases, big data

Assuring efficient and resilient manufacturing and distribution (1)

Sustainability, resilience and food security - Manufacturing and supply

Production systems, with built in process- control considering the complete product and package life cycle (e.g. reduced energy input, reduced water consumption, reduced waste, environmental friendly sanitation methods) with reduced environmental impact - smart, integrated sensor systems, remote sensing, big data processing, actuators, manipulators, expert sytems, intelligent network of equipment within a processing line and along the food supply chain, flexible, easily reconfigurable, upgradeable equipment and manufacturing systems

Assuring efficient and resilient manufacturing and distribution (2)

Sustainability, resilience and food security - Manufacturing and supply

- Technologies, benchmarking systems, modelling tools and best practice guidance for saving and/or recovering water, energy and other resources and reducing, valorising waste – integrated sensor systems, sensor controlled robots, tele-maintenance, expert systems for smart process design
- Reduction of the cost for investment for new equipment, maintenance, process control systems – new business models
- Food defence/site security cyber-security, microwave sensors

Assuring efficient and resilient manufacturing and distribution (3)

Sustainability, resilience and food security - Manufacturing and supply

- Low friction surfaces Diamond like carbon coating
- Local sourcing, short food supply chains technical support to market access - improved, standardised data exchange and information flow management, ICT supported logistic solutions
- On time delivery, optimised inventory level big data, route management systems
- Assembling multi-component packs, pallets, handling heavy loads - robots

Delivering safe and compliant products that meet dietary needs

Sustainability, resilience and food security – Product and packaging

Guidance, information, coaching for heathy diet and specific diet – web based tools
Smart refrigerator- shelf life and stock monitoring- RFID tags

Building consumer trust

Sustainability, resilience and food security – Food, drink and the consumer

 Food transparency information – web based information flow and data management,

Developing and maintaining skills, knowledge and "tools"

Skills and knowledge – Manufacturing and supply

- Training of industry staff flipped classes, e-learning, knowledge portals
- Practical training, skills in virtual and augmented reality,
- Expert systems, knowledge transfer web-based tools, virtual and augmented reality

Anticipating and responding to regulatory and technical changes

Skills and knowledge – Product and packaging

 Improved databases to support food and packaging information provision(compositional data for new ingredients, reference databases for authenticity tests)

Engaging consumers

Skills and knowledge – Food, drink and the consumer

- Guidance, information, coaching for heathy diet and specific diet for consumer education – web based tools, apps, computer games
- Serving consumer's needs, personal profiles on information on transparency, authenticity, composition, nutritional value, origin, etc. – smart food labels/awareness
 – RFID tags, personal shopping assistants, smart retail services, web –based food transparency messages, signals, traceability information
- Involving consumers to co-creation of product concepts, recipes – big data, web-based tools

Conclusions

- Wide range of **opportunities**
 - adaptation of existing solutions developed for other sectors
 - **new solutions** developed specifically for the food industry
- Need for developing mutual understanding and awareness
 - regular transdisciplinary dialogue
 - collecting descriptions of new enabling functions and food industry problems
- Need for pilot testing facilities and trained staff

Thank you for your kind attention!

Further information: András Sebők, General Manager Campden BRI Magyarország Nonprofit Kft H-1096 Budapest, Haller u. 2, Hungary Tel: +36 1 433 1470; Fax: +36 1 433 1480 E-mail: <u>a.sebok@campdenkht.com</u>

